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ABSTRACT

Frequency synthesizers are one of the principal building blocks of precise
time and frequency systems, Direct digital synthesizers (DDS) have become
increasingly important as the need for small, low power, high resolution, wide
frequency range, fast settling, high spectral purity synthesizers has grown.
This paper reviews the various types of DDS”"s and the principles of their
design. DDS architectures fall into 6 major categories: pulse output, sine
output, triangle output, phase interpolation, jitter injection, and
fractional divider or pulse snatching DDS"s., The details, design principles,
and performance characteristics of these categories are reviewed and the pros
and cons of one category verses another are presented., Included is a
discussion of the relationships betweeen the design parameters of the various
types of DDS"s and synthesizer performance parameters such as spectral purity,
phase jitter, frequency range, frequency resolution, and settling time. Of
prime importance in the design of these DDS”s are the requirements on spurious
sideband and phase jitter levels. A theory for predicting these spur and
jitter levels and of relating these levels to DDS design parameters is
presented. It 1is shown that DDS spurs can be understood as coming from
harmonic distortion in the DDS output which 1is aliased down to lower
frequencies due to the discrete stepped nature of DDS operation., The
relationship of the sizes and frequencies of these aliasing spurs to DDS
parameters is discussed showing that spur considerations place fundamental
limitations on the permissable frequency range of the DDS. A quantitative
theory explaining how jitter injection reduces spur levels is also presented.

1. INTRODUCTION

Frequency synthesizers are one of the principal building blocks of precise
time and frequency systems. Direct digital synthesizers (DDS), which
synthesize waveforms wusing digital techniques, have become increasingly
important since the advent of large scale integration. Complex DDS$”s, because
of their inherently digital design, can be constructed with exceedingly small
size, weight, and power consumption using digital monolithic fabrication
techniques. Other advantages of DD5"s are their high and easily expandable
frequency resolution, their wide frequency range, their inherently fast
settling time, and for some DDS architectures, their high spectral purity.
This paper reviews the various types of DDS architectures in use today and the
principles of their design. The second section reviews the categories of DDS
architectures in use today. The third section discusses how the various DDS
architectures and design parameters relate to synthesizer performance
parameters. The fourth section summarizes the results and conclusions of the
previous sections.
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2. DIRECT DIGITAL SYNTHESIZER ARCHITECTURES

1
DDS designs in the technical literature fall into 6 major categories: pulse
output DDS"s, fractional divider or pulse snatching DDS“s, sine output DDS”s,
triangle output DDS”s, phase ioterpolation DDS°s, and jitter injection
techniques for reducing spur levels. A brief discussion of each catagory
follows,

PULSE OUTPUT DDS

The pulse output DDS (Kodanev, 1981; Peters, 1982) is the simplest of the 5
catagories of DDS"s, As shown in Figure 2.1, it wmerely consists of an K bit
accumulator set up to add the frequency word, K, to the accumulator value once

every clock period, T . That is, if the register value is R, once every Tc’-

the accumslator performs the operation:
R+K-—>R ‘ (2.1

in modulo 2N arithmetic, Note that for this additionm process, the accumulator
will overflow, on average, once every 2 /K clock periods, so the average
frequency of overflows will be:

f =Ff | (2.2)

o c “
where fc’ the clock frequemcy, is lITc, and where the fractional output
frequency, F, is given by:

F = k/2V - (@2

The frequency output of this synthesizer is merely the carry output of the
accumulator for a pulse output or the most significant bit (MSB) of the
accummlator for an approximate square wave output. A typical example of the
output of a pulse output DDS is shown in Figure 2.2.

As will be discussed later, this type of DDS has the simplest architecture but
the highest level of spurs and phase jitter.

FRACTIONAL DIVIDER OR PULSE SWALLOWING DDS

The fractional divider (Hassun, 1984; Nazarenko, 1982; Nissonevitch; 1978; No
Author, 1982; Schineller, 1892; Rohde, 1981) or pulse swallower (Kohler, 1983)
is a variation on the pulse output DDS. A block diagram of the fractional
divider DDS is shown in Figure 2.3, In this type of DDS, the accumlator carry
output is used to drive the n/n+l control line of a divide by n/n+l counter so
that n+l division occurs on a carry. The accummlator, in this case, 1is
clocked by the output of the divider, f , s0 the carry sets the n+l divide
for the npext output of the divider after the carry occurs. The divider is
clocked by the fc input and the output of the DDS is fo. One can show that,
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on average, the output frequency is: _
£ =£ [ (n+F) : (2.4)
o c :

where F is again given by (2.3), (Notice that, in this case, F determines the
fractional part of the division.) A typical example of the output of a
fractional divider DDS is shown in Figure 2.4.

As will be discussed later, this type of DDS has spurs and phase jitter
similar to those of the pulse output DDS.

SINE OUTPUT DDS

The sine output DDS produces a smoother more sine-like signal by adding a sine
look~up table and a digital to analog converter (DAC) to the pulse type DDS
(Tierney, 1971; Gorski-Popiel, 1975; Rabiner, 1975; Galbraith, 1982; Hoppes,
1982; Kaiser, 1985; Crowley, 1982)., A block diagram of the sine output DDS is
shown in Figure 2.5. The sine look-up table computes Sin(2mr) to the
resolution of the sine table where r, the fractional register value is:

r = r/2Y ‘ ' (2.5)

The output of the sine-table is then sent to a DAC which outputs a voltage
proportional the sine-table value to the M-bit resolution of the DAC., The
result of this process is to produce a stepped sine wave output where the nth
step is given by:

V=A Mod,(Sin(ZnFf nT )) o ‘ (2.6)
cC cC .

vhere Mod, (x) truncates x to M bits. Figure 2.6 shows a typical stepped
output of a sine output DDS,

A good deal of the circuit complexity of the sine output DDS comes from
the sine table. Generating the sine table to full resolution directly from a
read only memory (ROM) wusually requires a prohibitively large ROM, so
techniques have been developed to reduce the ROM requirements by computing the
sine value from several lower resolution tables (Sunderlamnd, 1984). The block
diasgram of a wonolithic Hughes Aircraft sine output DDS which wuses this
technique is shown in Figure 2.,7. The DDS is a 2 chip set consisting of a
Hughes fabricated DDS chip and a coumercial DAC chip. The DDS chip 1is
fabricated using silicon on saphire (S0S) technology and is capable of running
at clock frequencies of up to 10 MHZ, A picture of the Hughes DDS chip is
shown in Figure 2.8,

As will be discussed later, the sine output DDS has oné¢ of the lowest levels
phase jitter, but has the highest level of circuit complexity.
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PHASE INTERPOLATION DDS

A phase interpolation DDS (Hassun, 1984; Kochemasov, 1982; DesBrisay,
1970; Crowley, 1982; Schineller, 1982; Rohde, 1981; Gillette, 1969; Nossen,
1980; Bjerede, 1976) is similar to the sine output DDS in that it produces
lower spurs, but it does not require a sine look-up table. Two versions are
shown in Figures 2.9 and 2.10. The phase interpolation DDS utilizes the fact
that, whenever an output tramsition occurs in a pulse output DDS or a
fractional divider, the accumulator register value R is proportiomal to the
time or phase difference between the gutput transitions of the DDS and that of
an ideal frequency generator. Thus if R is used to phase shift or delay the
output of a pulse output or fractional divider DDS, lower phase jitter and
spurs will result. In Figure 2.9, the output is phase shifted using a phase
lock loop (PLL) consisting of a linear phase detector, a differential loop
amplifier, and a DAC driven by the DDS accumulator register (Hassun,1984;
Gillette, 1969; Nossen, 1980; Rohde, 1981; Bjerede, 1976; Schineller, 1982;
Crowley, 1982). In Figure 2.10, either a digitally controlled phase shifter
(DesBrisay, 1970) or a digitally controlled delay generator (Kochemasov, 1982)
ariven by the DDS accumlator register are used to directly phase shift or
delay the output. Figure 2.11 shows a typical output wave form from a digital
phase shifter type of phase interpolation DDS. As will be discussed later, the
phase jitter and spur level reductions that are achievable with phase
interpolation DDS“s are limited by the limearity, accuracy, and resolution of
the digital to phase or delay conversion process.

For tbe pulse output DDS, the tramsition time, &t, is late by T r/F and the
phase error, g, is given by -2ur (See Figure 2.2.). Thus a pulse Sutput phase
interpolation DDS is more easily implemented using a PLL or a digitally
controlled phase shifter becauvse r wust only be multiplied by constant to
obtain the required phase shift, but must be divided by F to obtain the
required chapge in transition time.

For a direct output fractional divider, the next output transition of the
divide by n/n+l counter will be early by rT_ and ¢ will be given by r/(n+F)
(See Figure 2.4.). Thus a direct output fractional divider phase ianterpolation
DDS 1is more easily implemented using a digitally controlled delay generator.
For a fractional divider phase interpolation DDS implemented with the divide
by n/n+l counter in a divider loop of a PLL, however, the output phase error
is proportional to r/n (Hassun, 1984). This type of DDS therefore is easily
imp lemented with a fixed gain for the DAC if n is not changed.

A simplified version of the phase interpolation DDS with much narrower
frequency range is the phase microstepper (Lavanceau, 1985; DesBrisay, 1970).
This device uses a digitally controlled phase shifter operating off a single
clock frequency to produce small variations in the clock frequency with
extremely high resolution. A typical phase microstepper produces 5 MHz plus or
minus ome part in 10 ° with a fractional frequency resolution of 1x10
(Lavanceau, 1985).
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TRIANGLE OUTPUT DDS

A triangle output DDS is another variation of a sine output DDS which does not
require a sine table (DesBrisay, 1984), Its block diagram is shown in Figure
2,12 along with a typical output. In this type of DDS, the accumulator
register value R of a pulse output DDS is used to drive a DAC directly after
passing through a bit compliment logic circuit. This produces a stepped
triangle wave output, As will be discussed later, this traingle wave output
has lower spurs than the ocutputs of a fractional divider or pulse output DDS,

WHEATLEY RANDOM JITTERING TECHNIQUE

Wheatley has patented (Wheatley, 1983) a random jitter injection technique
for use on a pulse output DDS which reduces the size of the spectral spurs in
the output. As will be discussed later, this technique reduces the spurs by
destroying the periodicity of the phase deviation patterns of the output
transitions (Wheatley, 1981). The technique has two embodiments as shown in
Figures 2.13 and 2.14, In Figure 2,13, for two clock cycles after an
accumulator overflow, the frequency word K is replaced successively by the
values K+X. and K-X. , where X. is a sequence of equally distributed random
values from'0 to K-11~ Wheatleylhas claimed that this replacement will destroy
the coherence of the deviation pattern so that the spectral spurs will be
replaced by a broadband noise spectrum (Wheatley, 1981). Later he has claimed
only that the spurs will be reduced (Wheatley, 1983), He has published two
values for the spectral density of the broadband noise spectrum at frequencies
small compared to £ : - £3/(3f>) (Wheatley, 1981) and f /e> (Wheat ley,
1983). ¢ o ¢ o ¢

In Figure 2.14, the same result as Figure 2.13 is obtained by summing, in a
second adder (add and output register), the value contained in the accumulator
of a conventional pulse output DDS (add and accumulate register) with the
random number X. (X. has the same properties as before). (The second register
performs the oOperation R+X, modulo 2.) The frequency output is the carry
output (overflow #2) of the add and output register. In both Figures 2.13 and
2.14, the divide by two after the carries is to produce a square wave rather
than a pulse output and is an unessential part of the devices. Figure 2.15
shows a sample spectrum of a pulse output DDS with and without the Wheatley
technique,
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3. DDS DESIGN CONSIDERATIONS

Important synthesizer performance parameters that the DDS designer must
consider are: the frequency range (maximum frequency and minimum frequency),
the frequency resolution, the phase jitter, the spectral purity (spurious
sidebands, harmonics, and noise), and the settling time. What follows in this
section is a discussion of how each of these synthesizer performance
parameters are determined by the design parameters of the various types of
DDS“s described in the previous section. For our discussion of the spectral
purity, we will ignore the effects of logic device noise (See Kroupa, 1982 and
1983,) and reference oscillator phase noise on the spectral purity. We will
thus consider the spectral purity as described totally by the spurs and
harmonics generated by the DDS,.

SPECTRAL PURITY (SPURS AND HARMONICS)

The spurs and harmonics in the DDS ouput are extremely important in
determining not only the spectral purity of the DDS but also in determining
the settling time, phase jitter, and frequency range of the DD5. Therefore we
will discuss the theory of these spurs and harmonics first. The spurs
generated by a DDS can be understood as coming from harmonics of the DDS
output aliased down to lower frequencies by the stepped or sampled nature of
DDS operation, The following sections describe in detail the theory behind
this aliasing process,

SPUR GENERATION IN SINE, PULSE, AND TRIANGLE, OUTPUT DDS$°S. To understand how
DDS spurs are generated by aliasing in sine, pulse, and triangle output DDS’s,
we shall consider the DDS model shown in Figure 3.1, The derivation presented
is a generalization of a similar discussion presented in Cole, 1982, for sine
output DDS“s. In this model, an accumulator fractional register value, r, is
incremented once every clock period, T , by a fractional frequency word, F, so
that after n clock periods the fractidnal register value is given by:

r =nF (3.1)
n .

Note we can also write:

r, =f t ‘ (3.2)
n o o

where fo is the output frequency of the DDS and where tnﬂnTc.

The register value is then converted to a voltage v(r) by a register to
voltage conversion process, 5o that after n clock periods, the voltage output
of the DDS is v(r ). The finite length of the accumulator is taken into
account by assuming'v(r) is a periodic function of r with apericd of 1. (An N
bit accumulator rolls over when its register value equals 2, or when r=R/2
equals 1.) That is:

v(r) = v(r+l) _ - (3.3)
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For the sine output DDS, v(r) is the quantized sine wave produced by the sine
table and DAC., For the pulse output DDS, v(r) is either a square wave or a
pulse depending on the output used, and for the triangle output DDS, v(r) is
the stepped triangle wave.

Using this model, the we can write the DDS output as:

Oy
v (£) = & v(f e ) nlt-t ) _ _ (3.4)

n=- ae

where h(t) is the unit hold function: h(t)=1 for 0 < t < T, and h(t)=0
otherwise. (3.4) can be rewritten as the convolution of a sampléd output with
the hold function:

vh(t) = \fdt' vs(t') h(t-t*) | (3.5)
where: ; - : _
v (£) = v(£ t) blt) | (3.6)
and:
(=] .
b(t) = Z S(t-tn) | (3.7)
n=-oe

(In writing (3.6), we have used the fact that the delta functions in b(t) are
zero unless t=t_ to replace v(focn) with v(fot).)

It is well known that a sampled function such as (3.6) with samples every T
will alias the spectrum of the original signal at fourier frequency f tS
frequencies f-mfC where m is an integer (Oppenhkeim, 1975; Rabiner, 1975)., To
show this, we use the fact that the fourier transform of the product of two
functions is the convolution of the fourier transforms of the two functions to
rewrite (3.6) as:

v_(£) = J”df' V(£*) B(E-£") | (3.8)

where B(f) is the fourier transform of b(t), V(f) is the fourier transform of
v(fot), and Vs(f) is the fourier transform of vs(t). Since:

o o T
B(E) = & oIV ' ’ (3.9)

p== Qo
where w=2nf, one can show that:

B(¢) = £ E. §(f-me ) | o : (3.10)

m=— o

(To obtain (3.10), one shows that the sum in (3.9) is zero for wT #2rm, and
that, for ch=2nm, the sum over n blows up as the number of sampies in the
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sum,) Combining (3.8) and (3.10), we obtain:

V(£) = £, n§m\l((f—mfc) - ' : (3.11)

demonstrating the aliasing of the spectrum of V(fot) by the sampling process.

To obtain V. (f), the fourier transform of v _(t), from V (f), we note that
(3.5) is the convolution of v (t) and h(t), "Since the fourier transform of a
convolution is the product of the fourier transforms, we can write:

V() = v (0 me) (3.12)

where H(f), the fourier transform of h(t), is given by:

H(E) = T_ A L Si};(nfrc)/(nfrc) (3.13)

Since v(r) 1is a periodic function, it has a fourier harmonic
expansion given by (Selby, 1974):

v = Z o gJmmr | (3.14)

m=-— oo

where the fourier coefficients are given by: . :
1 -3 2mmr .
s = [ arvo e BN ERT)
n 0

V(f), the fourier transform of v(fot). thus becomes:

_ o - |
v(g) = e S(f-—mfo) , (3.16)

m=—os

Combining (3.16) with (3,12), and (3.11), we obtain our final result:

O - ] -
v, (£) = £ H(£) niﬁm%_ a §(f-mf -m’f ) (3.17)
|

In Summary, (3.17) states that the sample and hold process of stepping the
output by v(nfoTC):

1. puts the a, the harmonics of v{(r), at nf ,

2, aliases these harmonics by multiples of fc (m'fc) because of the sampling
involved in the stepping process, and

3. multiplies the harmonics of v(r) after the frequency aliasing by £ H(f)
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due to the holding involved in the stepping process,

The Principal Spur. Because of the aliasing, the m=-1 harmonic of v(r) at -fo
will be translated in frequency to f -f . For real v(r), a_ is the complex
conjugate of a,, Therefore the magnigud% of this -1 spur at f.,-f only differs
from the magnitude of the fundamental at f by the ratio of °IH{f_-f )| to
[H(f )], This means that when f -f is near if frequency to f,, the -1 sgur is
almost as large as the carrier.C Because of this fact, the -1 spur is called
the principal spur. This principal spur places fundamental limitations on how
large fo can be relative to f . This will be discussed in more detail later in
the frequency range section.

Other Spurs and Harmomics, The size of the other spurs and harmonics depend on
the details of v(r). Because a square wave has odd harmonics (a_) which are
proportional to 1/m, the pulse output DDS will have relatively 1a¥ge spurs and
harmonics. For example, when F is approximately 1/4, the -3rd harmonic of v(r)
will be aliased to a spur very near the carrier which will be only 10 dB down
from the carrier. Using a triangle wave output reduces the spurs because a
triangle wave has odd harmonics proportional to 1/m™ For our example of F
approximately equal to 1/4, the aliased -3rd harmonic will produce a spur 20
dB down from the carrier. The sine output DDS has the lowest spurs of all
because the sine table and DAC produce the lowest harmonics. If the deviation
from a perfect sine wave produced by the sine table and DAC is equal or
less than 1/2 of the least significant bit (LSB) of the M-bit DAC, one can
show, using Parseval”s Theorem, that the relative amplitude of the spurs other
than those produced by the ~lth and lst harmonic is smaller than 2-™ (Cole,
1982).

Spur Frequency Algebra. Since the frequencies of the spurs between 0 and f
are given by the harmonics of v(r) at mf aliased down by some multiple of f‘f
the relative frequencies, f£/f , of thespurs is given by Frac(mF)=mF-Int (uF)
where Int(x) is the greatest integer value equal or less than x. (Note that
Frac(mF) is always between 0 and 1, even for mF negative.) In Appendix A, it
is shown, for F in reduced fraction form given by a/b, that the relative
frequencies of the spurs (including the fundamental) are given by k/b where k
= 0 to b~l, This means that there are at most b distinct spurs (including the
fundamental) between 0 at f.. Since F=K/2", the number of spurs between 0 and
f can range from 2 if K is odd (K/2" then is the reduced fraction.) to very
few spurs for F equal to reduced fractions such as 1/4 (3 spurs and the
fundamental), The problem of having F equal to reduced fractions with small
denominators like 1/4 or 3/8, 1is that many harmonics will coalesce into omne
spur whose amplitude is the sum of many aliased harmonic amplitudes. This
summing of harmonic amplitudes can generate larger spurs than indicated by the
square of the individual a given in the previous section,

The fact that the spurs must occur at relative frequencies of k/b also means
that the spur nearest to the carrier has to be at least f /2Y away from the
carrier. Since f /2" is the frequency resolution of the bps, this means that
the nearest spur fust be separated from the carrier by at least the frequency
resolution of the DDS.
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SPUR GENERATION IN FRACTIONAL DIVIDERS., A fractional divider generates an
output whose average frequency is given by £ =f /(n+F). One can show that the
phase deviations generated by the fractional®diVider output are equivalent to
‘those generated by a pulse output DDS operating at a frequency f =F'f . where
F’=1/(n+F). Using this equivalence one can determine the spurs €of the
fractional divider by applying the theory of the 1last section to the
equivalent pulse output DDS,

SPUR GENERATION 1IN PHASE INTERPOLATION DDS"S. A digitally controlled phase
shifter type of phase interpolation DDS with a perfect M-bit phase,, shifter
acts like a pulse output DDS with its clock frequency multiplied by 2~ because
the time qﬁantization size for the output transitions have been reduced from
TC to TC/Z by the phase shifter, Thus the spur theory of a pulse output_H?S
can be applied to this case by replacing f with 2 and replacing F with 2 .
An implication of this 1is that.the figst hérmonic which can be aliased into a
spur has |m| equal or greater than 2°, Since the mth harmonic of the square
wave output is proportional to 1/|m|, the relative amplitude of the largest
spur of a phase_interpolation DDS with a phase shifter with M-bit precision is
thus at least 2° down frowm the carrier just as for a sine output DDS. Another
implication of this is that the nearest spur is again fr from the carrier.

For an imperfect phase shifter, there will be a residual phase error at each
positive going output transition given by g(r ) where r is the fractional
acumulator value at the mth positive going output transition. In the section
on phase jitter, it is shown, for F in reduced fraction form given by "a/b,
that the values of r are given by p , the periodic repetition of a
permutation of 0/b, l/b? ee. (a=1)/b. AR important consequence of this that
the phase shifter is only required to operate over a range of ro from 0 to F,
so the phase shifter need only be accurate over a range given by the 1largest
value of F to be used,

Since the phase error is a periodic quantity sawpled once every output period,

To, we can determine the output spurs from the discrete fourier transform of
ﬂ(rm) given by (Oppenheim, 1975; Rabiner, 1975):

a-1 . - .
c.=al E () itmm/a | (3.18)
m m=0 m . }

Notice that there are only a different values of c .- because of the
periodicity and discrete nature of ¢(rm). The output phase spur spectrum, $(f)
then, is given by:

o _
2(f) = 3 c_ S(E-mfc/b) (3.19)

= o

Since f /a=f /b, the spur frequencigs can be represented as mfo/a or mf /b.

Because the largest value of b is 2° (K odd), the nearest spur is again fr

from the carrier.,
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Using Parseval®s theorem, one can show_that lc_ 1 is less than or equal to the
largest value of lg(r )|, If |g(r )I<2 M we oBtain that the phase spurs must
be less than 27, which is equivalent to the previous result obtained for the
ideal M-bit case.

N e M

The PLL type of phase interpolation DDS can be treated as a digitally
controlled phase shifter type of phase interpolation DDS with an additional
output filter with a frequency response equivalent to the filtering action of
the PLL,

o ke e g

SPURS AND NOISE FOR THE WHEATLEY RANDOM JITTERING TECHNIQUE. Since the
Wheatley technique involves the uses of random variables, a spectral density
approach rather than a fourier tranform of the amplitude approach, as
previously presented, must be used. Ve can model the output of a DDS using the
Wheatley technique by the equation:

v (6) = = vt +x ) h(t-t ) N (3.20)

n=—oe

where X, is a random variable which has equal probability of being k/Z wvhere
k =0,1,.7.K~1. Notice that the only difference between this equation and (3.4)
is the addition of x in the the argument of v(r). Again we break v _(t) into
the convolution of a sampled output, vs(t), with h{(t). vs(t) is now equal to:

(-]

v (t) = & v(f tex ) S(t-t ) (3.21)
s (2] n n )

n=- e

The autocorrelation of v (t) is given by:

R () = <lim T _/'d: v (t+2) v (£)> | (3.22)
8 Tre T

where <...> indicates the ensemble average for the random variables x_  and
X e Taking the fourier transform of (3.22) to obtain the sampled spectral
densit S¢(f), evaluating the time integral by using the fact that
S(t*a)g(t-b) =§(t-a)8(a~b), using the fact that T=N/f where N is now the
number of sample points in the finite sums, and plugging in the harmonic
expansion of v(r) given by (3.14), we obtain:

N/2 N/2 a oo
Ss(f) = fc lim l\l-1 3 = s = a:‘, a L .

H-bow n==-N/2 n"==N/2 p=-m n"s-a mm
. ejZRF[n(m—m')"(m'-f/fo)(n-n')] ‘ (3.23)
where: e 4
me, e <ej2“(mxd-“«xn')> (3'24) ;
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Assuming that the x are random variables whose statistics don”t depend on n,
we can write L as:

L . = M@Mm") - [Mo-a’) - M@ )] § . (3.25)
mm nn )

wvhere 8nn, is 1 if n=n" and zero otherwise and M{(m), the characteristic

function of LI is:

j2mmx
n

Mm) = < e > : (3.26)

I
i

Evaluating the sums over n and n” in (3.23) using the fact that, since N goes

to infinity, the sums over n and n” can be changed to independent sums over n
and n-n“, we obtain:

S (£) = S (£) + S (f) (3.27)
s ) b \
where:
[ "3 O - ;
s =£2 £ & Z 4. w@)N@) S(fnf uf ) (3.28)
p c m=—os m =—sc m"(m) " b ° ¢ :
() =, & S 2*, a Mo M (e")M(m) ] (3.29)
C m m .

n=-cc m"(m)

and where the sum over m"{(m) is the sum over all values of m" for which
Frac(Fm")=Frac(Fm). Notice that S_ is the spur content of §, and that § is
the white noise comntent of Ss'

To obtain 8 _(f), the spectral demsity at the output of the DDS, we note again
that vh(t) is the convolution of vs(t) and h(t). Thus:

5, (£) = 5_(£) (e 12 - (3.30)

where:

)17 = £ 2 sin(ugT )/ Gt ) | (3.31)

For Wheatley s random process, the characteristic function can be evaluated
as:

J2F ) v (1o 2Ky : (3.32)

M(m) = (l-e

and for a square wave v(r) with an amplitude of 1: o

a = 2j/(mm) (for m odd) o (3.33)
= 0 ~ (for m even) : :
3%




Keeping only the m"=m terms in (3.28) and (3.29), we obtain the
approximations:

2 & £z 2 |
s(p) *f % & % JaMm)l® §(f-uf -m’f ) (3.34)
P ¢ e oo oa D o ¢
m=—on”=
5,(£) * £ (1 = 2 g M(m)l 1 ' (3.35)
m=]

where we have used the fact that iz|a | 2.1 to obtain (3.35). Evaluating
(3.35) pumerically, we find that: Sp(£)24f /3 for F>5e-3., (Below F=5E-3, 8, (£)
becomes approximately equal to 0. 03f ) OU51ng the low frequency value of
Ju(E) 1™ from (3.29), the low frequency  (F<<1) value of the noise part of S (f)
becomes:

2
shb(f) - 4f0/(3fc ) (f<<fc) . | (3.36)

This expression 1s mldwd! between Wheatley’s two expressions for the low
frequency noise floor of T f /(3f ) (Wheatley, 1981) and folfé‘ (Wheatley,
1983).

(3.34) and (3.35) have been checked against a computer simulation of the
Wheatley technique using SYSTID (Fashano, 1984), For S_, the spur part of S ’
there was excellent agreement. For S , the white noxsepbackgrOund term in S
the difference between theory and the simulation varied plus and minus 6 dB as
F was changed. In Wheatley, 1981, these periodic fluctuations were also
observed and attributed to destructive and constructive interference between
the jitter of the front and back edges of the square wave. The consequences of
the m"#m terms in (3,28) and (3.29) have not been investigated and may explain
these periodic variations,

One can see from (3.34) and (3.32) that the Wheatley technique is effective in
reducing spurs that come from high harmonics of the square wave, but that it
is fairly ineffective in reducing spurs that come from low harmonics. To draw
the conclusion that this means nearby spurs are effectively reduced, and far
away spurs are not, however, is wrong. While this is true for most values of
F, for values which are near small reduced fractions such as 1/3, one can find
spurs from low order harmonics very near the carrier such as the -5th harmonic
spur in the F approximately 1/3 case. Therefore the specific range of F to be
required, as well as the bandwidth to be considered, must be carefully
examined for nearby low order harmonic spurs before applying the Wheatley
technique.

PHASE JITTER

Unfiltered Phage Jitter of Sipne, Pulse, Triapngle, Output, and Fractional
Divider DDS's, Calculating the total phase jitter of an unfiltered sine
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output, triangle output, pulse output, or fractional divider DDS is
straightforward since the voltage transitions in these DDS“s must occur at
multiples of T , For a sine, pulse and triangle outpur DDS“s, the zero
crossing error, Ot, or the difference in time between the positive going zero
crossings of the DDS and those of an ideal signal is given by T /F times the
fractional register wvalue, r, after a carry. (See Figurec 2.2.) Since
r_=Frac(oF), after a carry, r must equal those values of Frac(nF) which are
less than F. In Appendix A, it is shown, for F in reduced fractiom form given
by a/b, that the sequence {Frac(nF)} is given by a periodic repetition of a
permutation of the sequence 0/b, 1/b,eecc..(b-1)/b. Thus the values of
Frac(nF) which are less than F must be given by a periodic repetition of some
permutation of the sequence 0/b, 1/b,.......{a-1)/b. Using this fact, one can
show that the variance of the zero crossing error, og-, is given by:

o-? = 1 2% intyaw?) B R (3.37)

Notice that the zero crossing jitter is zero for F=1/b. Since F=K/2N, this is
equivalent to F being an inverse power of 2 which should yield a zero
value of edge jitter. Since 8t is related to the phase error, ¢, by
=-20f 8t, the variance of the phase jitter for these unfiltered DDS outputs
i3 given by:
2

o? - 2 (F2- 1/62)/3 | | (3.38)

Both (3.37) and (3.38) also apply to a fractiomal divider with F set equal to
ll(n+F)o

Unfiltered Phase Jitter for a Phase Interpolation DDS. As discussed before,
from a jitter standpoint, a phase interpolation DD§ gs equivalent to a pulse
output DDS with its clock frequency multiplied by 27, From this it follows
that a phase interpolation DDS without an output filter will have a variance
of zero crossing error and a variance of phase jitter given by the values of
(3.37) and (3.38) multiplied by 2 >

Unfiltered Phase Jitter for Wheatley Technique, Using similar arguments as in
the previous sections, one can show that the variance of the zero crossing
jitter for the Wheatley jitter injection DDS"s is given by:

' 2

ai = TCZ J(a) ' : | (3.39)

and the variance of the phase jitter is given by:

o Z . 4::21?2 J(a) (3.40)

i
where: _ _ ‘
J(a) = (1-1/a)(17-13/a+2/a%-2/a3)/30 | (3.41)
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Aszlt sh u}d J(1) = 0. For a>1, J(a) = 17/30 = 1/2, so 012 ~=Tc2/2 and
Gk 2# F™ for a>>l.

Phase Jitter for Filtered Outputs, Of course, the above expressions for phase
jitter don”t apply when an output filter is used. When omne is wused, the
variance of the phase error can be obtained by integrating the product of
S (f) and the square of the output filter frequency response function over
frequency (excluding harmonics ian S (f) which do not contribute to the
jitter). Thus the phase jitter of a DDS with an output filter will depend on
the spurs which are in the filter bandwidth, and this will greatly depend on
the details of the spur algebra of Frac(mF). However, if F 1is less than
approximately 1/3, one can get an estimate of the worst case jitter of a DDS
with a principal spur low pass output filter with a cut-off frequency of f /2
by summing the square of all the a with |ml>l and dividing it “by
la, | +|a {*. For the Wheatley jitter ?njection technique, not only the spurs
bu the "broadband noise must be taken into account. Table 1 in Section 4
surmarizes the results of these estimates for the various types of DDS’s.

FREQUENCY RANGE

Two parameters define the frequency range: £ , the maximum frequency, and f_,
the minimum frequency. All the DDS”s can physically produce waves whose
frequency runs from the frequency resolution, f cr to f . However, because the
principal spur, which occurs at a frequency 6f f ~f “for all DDS’s except
phase interpolation DDS“s, wnust be substantially Sut®cf the frequency range,
f rmust be less than approximately f /3 for these DDS”s., (Others have used
3% /8 and 0.4f as the maximum allowable £, ) The phase interpolation DDS§,
which has its p%:nc1pal spur at 2"f -f o’ does not have this problem, and so
can have an f as high as f .

When £ is sufficiently below f,, the haruwonics of fo at the lower output
frequen01es will be less than f . For non-sinusoidal DDS”s, this means that a
switched low pass filter array must be used to filter out the harmonics. For
PLL type phase interpolation DDS"s, the lowest output frequency going into the
phase detector wmust be nuch greater than the loop bandwidth,

FREQUENCY RESOLUTION

For DDS”s which don“t use fractional dividers, the frequency resolution, fr’

is independent of the output frequency. For these DDS"s, the bit length, N, of

the DDS accumulator must be greater than 1og2(fclfr). For fractional divider

type DDS”s, the frequency resolution is a ~furiction of the output frequency.

The coarsest frequency resolution, f_, occurs at f =f , and for this coarsest
. _ b o o +

resolution, N~log2(f+/nfr).

Also, as mentioned previously, the frequency difference between the nearest

pogsible spur and the carrier is fr for non-phase interpolation DD$”s and
2 f_ for phase interpolation DD§’s,
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SETTLING TIME

Settling time considerations for the DDS itself are straightforward since all
the DDS types except for the PLL type of phase interpolation DDS settle in one
clock period. However, the settling time of the whole DDS system depends on
the filtering required at the output of the DDS to reduce spurs and harmonics.

1
1
i
1
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4, SUMMARY OF RESULTS AND CORCLUSIONS

The following summarizes the results of the previous sections.

PARAMETER DEFINITIONS:

Frequency resolution = f - Clock frequency = f_

Max imum frequéncy = f Minimum frequency = f_

4=

Bit length of Accumulator = N Bit accuracy of DAC and sine table ;
or DAC and phase interpolator = M o
Output frequency = fo
: Accumulator fractional frequency
fractional divider integer word = F
divisor = n
In reduced fraction form F = a/b

OUTPUT FREQUENCY:

For fractional divider: £, = fC/(n+F)

For all other DDS”s: fo = ch

MAXIMUM FREQUENCY: : . | ;

For phase interpolation DDS”s: £, = fé

For all other DDS”s: £, = fc/3'

ACCUMULATOR BIT LENGTH: Q

For fractional divider type DDS"s: N> logz(f+/nfr) :

For non-fractional divider type DDSs”: N > logz(fc/f ) :  33
r . : i

SPUR FREQUENCIES: ' f k/b for k = an integer :

FREQUENCY DIFFERENCE BETWEEN NEAREST SPUR AND THE CARRIER: £
T
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PRINCIPAL SPUR FREQUENCY:

For phase interpolation DDS:

For all other DDS s:

TABLE 1. ESTIMATE OF DDS PHASE JITTER AND SPUR AMPLITUDES

TYPE OF DDS

PULSE OUTPUT
FRACTIONAL DIVIDER
TRIANGLE OUTPUT
SINE OUTPUT
WHEATLEY

PHASE INTERPOLATION

WORST CASE PHASE JITTER

IN RADIANS

NO FILTER
(a>>1)

Lk
u/ ((n+F)3)
oF //3
oF/J3
JZ oF

ar2 M3

WITH PRINCIPAL

SPUR FILTER
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APPENDIX A, THE PROPERT1ES OF FRAC(nF)

Both the zero crossing errors and the spur frequencies of a DDS are determired
by the properties of Frac(nF)=nF~Int(nF) where Int(x) is the largest integer
less than x and where n is an integer ranging from minus to plus infinity.
Thus the properties of both the zero crossing jitter and the spur frequencies
are determined by the properties of the sequence {x_}={Frac(oF)}. If F, in
reduced fraction form, is given by a/b, the sequence {x_} must contain only
the values k/b where k=0 to b-l and must be periodic With a period of b
(xn =x_) because Frac((n+b)a/b)=Frac(na/b). Since X,y is uniquely determined
from x_ (x_ .=Frac(x_+F)), the sequence {x_} for b conmsecutive values must
either"(1)"A5t conta’n any repeat values or"(2) be periodic with a period less
than b. Since a/b is a reduced fraction, sequence {x_} cannot be periodic with
a period less than b because that would mear n“a/b 1s an integer for n” less
than b. Therefore the sequence {x,} bas b distinct values before it repeats,
and sc¢ the sequence {x_}={Frac(uF)} must be given by the periodic repetition
of some permutation of "0/b, 1/b,eesesss.(b=1)/b,
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Figure 2.1. Pulse output DDS architecture,
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Edge jitter = 6t e
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1 ] L.J | | [ . output

Figure 2.2, Typical ouput waveform of pulse output DDS.
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Figure 2.3. The block diagram of a fractional divider or pulse swallowing DDS.
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Figure 2.4 Typical output waveform of a fractional divider or pulse swallowing
DDS.
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Figure 2.7. Hughes sine output DDS block diagram.
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Figure 2.8. A picture of the Hughes DDS chip. : o
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Figure 2.9. ©Phase lock loop type of phase interpolation DDS.
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Figure 2.10, Direct output type of phase interpolation DDS,.
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Figure 2.11, Typical output waveform of a digitally controlled phase shifter
type of phase interpolation DDS,
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Figure 2,12, Block diagram of a triangle output DDS and a typical output.
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Overflow

fo
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~ Technique a

Figure 2.13. Wheatley Random Jittering Technique a.
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Figufe 2.14. Wheatley Random Jittering Technique b.
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Figure 3.l. A General Model of a sine, pulse, and triamngle output DDS.
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